Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Eur J Pharm Biopharm ; 198: 114270, 2024 May.
Article En | MEDLINE | ID: mdl-38537908

Poorly soluble drugs represent a substantial portion of emerging drug candidates, posing significant challenges for pharmaceutical formulators. One promising method to enhance the drug's dissolution rate and, consequently, bioavailability involves transforming them into an amorphous state within mesoporous materials. These materials can then be seamlessly integrated into personalized drug formulations using Additive Manufacturing (AM) techniques, most commonly via Fused Deposition Modeling. Another innovative approach within the realm of AM for mesoporous material-based formulations is semi-solid extrusion (SSE). This study showcases the feasibility of a straightforward yet groundbreaking hybrid 3D printing system employing SSE to incorporate drug-loaded mesoporous magnesium carbonate (MMC) into two different drug formulations, each designed for distinct administration routes. MMC was loaded with the poorly water-soluble drug ibuprofen via a solvent evaporation method and mixed with PEG 400 as a binder and lubricant, facilitating subsequent SSE. The formulation is non-aqueous, unlike most pastes which are used for SSE, and thus is beneficial for the incorporation of poorly water-soluble drugs. The 3D printing process yielded tablets for oral administration and suppositories for rectal administration, which were then analyzed for their dissolution behavior in biorelevant media. These investigations revealed enhancements in the dissolution kinetics of the amorphous drug-loaded MMC formulations. Furthermore, an impressive drug loading of 15.3 % w/w of the total formulation was achieved, marking the highest reported loading for SSE formulations incorporating mesoporous materials to stabilize drugs in their amorphous state by a wide margin. This simple formulation containing PEG 400 also showed advantages over other aqueous formulations for SSE in that the formulations did not exhibit weight loss or changes in size or form during the curing process post-printing. These results underscore the substantial potential of this innovative hybrid 3D printing system for the development of drug dosage forms, particularly for improving the release profile of poorly water-soluble drugs.


Polyethylene Glycols , Printing, Three-Dimensional , Technology, Pharmaceutical , Pharmaceutical Preparations , Solubility , Drug Liberation , Drug Compounding , Technology, Pharmaceutical/methods , Tablets
2.
Eur J Pharm Sci ; 187: 106486, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37277047

Fused deposition modeling (FDM) and selective laser sintering (SLS) are two of the most employed additive manufacturing (AM) techniques within the pharmaceutical research field. Despite the numerous advantages of different AM methods, their respective drawbacks have yet to be fully addressed, and therefore combinatorial systems are starting to emerge. In the present study, hybrid systems comprising SLS inserts and a two-compartment FDM shell are developed to achieve controlled release of the model drug theophylline. Via the use of SLS a partial amorphization of the drug is demonstrated, which can be advantageous in the case of poorly soluble drugs, and it is shown that sintering parameters can regulate the dosage and release kinetics of the drug from the inserts. Furthermore, via different combinations of inserts within the FDM-printed shell, various drug release patterns, such as a two-step or prolonged release, can be achieved. The study serves as a proof of concept, highlighting the advantages of combining two AM techniques, both to overcome their respective shortcomings and to develop modular and highly tunable drug delivery devices.


Drug Delivery Systems , Theophylline , Pharmaceutical Preparations , Drug Liberation , Drug Delivery Systems/methods , Printing, Three-Dimensional , Technology, Pharmaceutical/methods , Dosage Forms , Tablets
3.
J Pharm Biomed Anal ; 231: 115396, 2023 Jul 05.
Article En | MEDLINE | ID: mdl-37086588

Additive Manufacturing (AM) is a fast-growing approach to produce personalized oral dosage forms. Even though some AM technologies are promising as alternative to conventional compounding with resulting dosage manipulation, they still suffer from a lack of quality control. Due to the high regulatory demands and standards applied to dosage forms in the case of dose accuracy and tablet properties such as friability, effective quality control is a key feature in promoting AM as a valid technology for patient-tailored medications. One of the AM techniques used is selective laser sintering, which allows for capturing the surface state layer-by-layer during the printing process. It provides the opportunity to apply non-destructive quality control based on image analysis extracting essential data at each layer of the sintering process. This work is devoted to establishing the value of data gathered via thermal image analysis for the subsequent quality control.


Printing, Three-Dimensional , Humans , Quality Control , Precision Medicine
4.
Int J Pharm ; 635: 122780, 2023 Mar 25.
Article En | MEDLINE | ID: mdl-36849041

Large batches of placebo and drug-loaded solid dosage forms were successfully fabricated using selective laser sintering (SLS) 3D printing in this study. The tablet batches were prepared using either copovidone (N-vinyl-2-pyrrolidone and vinyl acetate, PVP/VA) or polyvinyl alcohol (PVA) and activated carbon (AC) as radiation absorbent, which was added to improve the sintering of the polymer. The physical properties of the dosage forms were evaluated at different pigment concentrations (i.e., 0.5 and 1.0 wt%) and at different laser energy inputs. The mass, hardness, and friability of the tablets were found to be tunable and structures with greater mass and mechanical strength were obtained with increasing carbon concentration and energy input. Amorphization of the active pharmaceutical ingredient in the drug-loaded batches, containing 10 wt% naproxen and 1 wt% AC, was achieved in-situ during printing. Thus, amorphous solid dispersions were prepared in a single-step process and produced tablets with mass losses below 1 wt%. These findings show how the properties of dosage forms can be tuned by careful selection of the process parameters and the powder formulation. SLS 3D printing can therefore be considered to be an interesting and promising technique for the fabrication of personalized medicines.


Lasers , Polymers , Powders , Drug Compounding/methods , Tablets/chemistry , Polymers/chemistry , Printing, Three-Dimensional , Drug Liberation , Technology, Pharmaceutical/methods , Dosage Forms
5.
Int J Mol Sci ; 23(10)2022 May 21.
Article En | MEDLINE | ID: mdl-35628601

Three-dimensional (3D) cultures, so-called organoids, have emerged as an attractive tool for disease modeling and therapeutic innovations. Here, we aim to determine if boundary cap neural crest stem cells (BC) can survive and differentiate in gelatin-based 3D bioprinted bioink scaffolds in order to establish an enabling technology for the fabrication of spinal cord organoids on a chip. BC previously demonstrated the ability to support survival and differentiation of co-implanted or co-cultured cells and supported motor neuron survival in excitotoxically challenged spinal cord slice cultures. We tested different combinations of bioink and cross-linked material, analyzed the survival of BC on the surface and inside the scaffolds, and then tested if human iPSC-derived neural cells (motor neuron precursors and astrocytes) can be printed with the same protocol, which was developed for BC. We showed that this protocol is applicable for human cells. Neural differentiation was more prominent in the peripheral compared to central parts of the printed construct, presumably because of easier access to differentiation-promoting factors in the medium. These findings show that the gelatin-based and enzymatically cross-linked hydrogel is a suitable bioink for building a multicellular, bioprinted spinal cord organoid, but that further measures are still required to achieve uniform neural differentiation.


Neural Stem Cells , Organoids , Gelatin , Humans , Neural Crest , Spinal Cord
...